Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.

Identifieur interne : 002015 ( Main/Exploration ); précédent : 002014; suivant : 002016

The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.

Auteurs : Huixia Wang [République populaire de Chine] ; Hui Shi [République populaire de Chine] ; Yangyang Li [République populaire de Chine] ; Yanhui Wang [République populaire de Chine]

Source :

RBID : pubmed:25198355

Descripteurs français

English descriptors

Abstract

The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2) on adaxial surfaces and 0.72 to 93.35 g/m(2) on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water.

DOI: 10.1371/journal.pone.0107062
PubMed: 25198355
PubMed Central: PMC4157819


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.</title>
<author>
<name sortKey="Wang, Huixia" sort="Wang, Huixia" uniqKey="Wang H" first="Huixia" last="Wang">Huixia Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an</wicri:regionArea>
<wicri:noRegion>Xi'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Hui" sort="Shi, Hui" uniqKey="Shi H" first="Hui" last="Shi">Hui Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an</wicri:regionArea>
<wicri:noRegion>Xi'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yangyang" sort="Li, Yangyang" uniqKey="Li Y" first="Yangyang" last="Li">Yangyang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yanhui" sort="Wang, Yanhui" uniqKey="Wang Y" first="Yanhui" last="Wang">Yanhui Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25198355</idno>
<idno type="pmid">25198355</idno>
<idno type="doi">10.1371/journal.pone.0107062</idno>
<idno type="pmc">PMC4157819</idno>
<idno type="wicri:Area/Main/Corpus">002019</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002019</idno>
<idno type="wicri:Area/Main/Curation">002019</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002019</idno>
<idno type="wicri:Area/Main/Exploration">002019</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.</title>
<author>
<name sortKey="Wang, Huixia" sort="Wang, Huixia" uniqKey="Wang H" first="Huixia" last="Wang">Huixia Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an</wicri:regionArea>
<wicri:noRegion>Xi'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Hui" sort="Shi, Hui" uniqKey="Shi H" first="Hui" last="Shi">Hui Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an</wicri:regionArea>
<wicri:noRegion>Xi'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yangyang" sort="Li, Yangyang" uniqKey="Li Y" first="Yangyang" last="Li">Yangyang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yanhui" sort="Wang, Yanhui" uniqKey="Wang Y" first="Yanhui" last="Wang">Yanhui Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption, Physiological (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (physiology)</term>
<term>Plants (chemistry)</term>
<term>Surface Properties (MeSH)</term>
<term>Water (chemistry)</term>
<term>Wettability (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Absorption physiologique (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Mouillabilité (MeSH)</term>
<term>Plantes (composition chimique)</term>
<term>Propriétés de surface (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Absorption, Physiological</term>
<term>Surface Properties</term>
<term>Wettability</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Absorption physiologique</term>
<term>Mouillabilité</term>
<term>Propriétés de surface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2) on adaxial surfaces and 0.72 to 93.35 g/m(2) on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25198355</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.</ArticleTitle>
<Pagination>
<MedlinePgn>e107062</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0107062</ELocationID>
<Abstract>
<AbstractText>The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2) on adaxial surfaces and 0.72 to 93.35 g/m(2) on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Huixia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yangyang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yanhui</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D065567" MajorTopicYN="Y">Absorption, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017155" MajorTopicYN="Y">Wettability</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25198355</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0107062</ArticleId>
<ArticleId IdType="pii">PONE-D-14-19313</ArticleId>
<ArticleId IdType="pmc">PMC4157819</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Ecol. 2005 Nov;31(11):2621-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16273432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Jan;162(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2011 Dec;67(12):1562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2011 Jul;67(7):798-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21413140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24913938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2012 Jun 15;427-428:347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22554531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2098-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Jun;90(6):857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Apr;54(385):1295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2012;9:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151272</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Huixia" sort="Wang, Huixia" uniqKey="Wang H" first="Huixia" last="Wang">Huixia Wang</name>
</noRegion>
<name sortKey="Li, Yangyang" sort="Li, Yangyang" uniqKey="Li Y" first="Yangyang" last="Li">Yangyang Li</name>
<name sortKey="Shi, Hui" sort="Shi, Hui" uniqKey="Shi H" first="Hui" last="Shi">Hui Shi</name>
<name sortKey="Wang, Yanhui" sort="Wang, Yanhui" uniqKey="Wang Y" first="Yanhui" last="Wang">Yanhui Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002015 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002015 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25198355
   |texte=   The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25198355" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020